Journal of Organometallic Chemistry, 420 (1991) 345–352 Elsevier Sequoia S.A., Lausanne JOM 22144

# $[Ph_4P][CpTi(1,2-S_2C_6H_4)_2]$ : Synthese und Molekülstruktur eines anionischen, tetragonal-pyramidal koordinierten Benzol-1,2-dithiolato-Komplexes des Titans

### Hartmut Köpf \*, Katharina Lange und Joachim Pickardt

Institut für Anorganische und Analytische Chemie, Technische Universität Berlin, Straße des 17. Juni 135, W-1000 Berlin 12 (Deutschland)

(Eingegangen den 17. Juni 1991)

#### Abstract

The reaction of CpTiCl<sub>3</sub> with two equivalents of  $1,2-(\text{LiS})_2C_6H_4$  and one equivalent of Ph<sub>4</sub>PBr in acetone/pentane affords the new anionic titanium(IV) complex [Ph<sub>4</sub>P][CpTi(1,2-S<sub>2</sub>C<sub>6</sub>H<sub>4</sub>)<sub>2</sub>], which has been characterized by chemical analysis and by <sup>1</sup>H NMR and IR spectroscopy. The structure of the five-coordinated, half-sandwich bis(dithiolato)titanate anion in the tetraphenyl phosphonium salt has been determined by an X-ray diffraction study. The anion has the two five-membered TiS<sub>2</sub>C<sub>2</sub> chelate rings folded along the S-S axes by 36 and 23°, with one chelate ligand plane arranged *exo*, the other *endo* in relation to to the Cp ligand.

#### Zusammenfassung

Die Umsetzung von CpTiCl<sub>3</sub> mit zwei Äquivalenten 1,2-(LiS)<sub>2</sub>C<sub>6</sub>H<sub>4</sub> und einem Äquivalent Ph<sub>4</sub>PBr in Aceton/Pentan führt zur Darstellung des neuen anionischen Titan(IV)-Komplexes [Ph<sub>4</sub>P][CpTi(1,2-S<sub>2</sub>C<sub>6</sub>H<sub>4</sub>)<sub>2</sub>]. Die Verbindung wurde mittels Analyse, <sup>1</sup>H-NMR- und IR-Spektroskopie charakterisiert. Die Struktur des fünffach-koordinierten Halbsandwich-Bis(dithiolato)titanat-Anions im Tetraphenyl-phosphonium-Salz wurde durch Röntgenbeugung am Einkristall ermittelt. Im Anion sind die beiden fünfgliedrigen TiS<sub>2</sub>C<sub>2</sub>-Chelatringe entlang den S-S-Achsen um 36 bzw. 23° gefaltet, wobei eine Chelatligandenebene *exo*, die andere *endo* relativ zum Cp-Liganden orientiert ist.

#### Einleitung

Salzartige Monocyclopentadienyl-endithiolat-Komplexe mit einem fünffachkoordinierten Titan(IV)-Anion sind bislang durch die Reaktion von  $Cp_2TiCl_2$  ( $Cp = \eta^5-C_5H_5$ ) mit überschüssigem Endithiolat-Liganden  $(S_2C_2R_2)^{2-}$  dargestellt worden [1,2] (Gl. 1, 2).

$$Cp_2TiCl_2 + (S_2C_2R_2)^{2-} \rightarrow [Cp_2Ti(S_2C_2R_2)] + 2 Cl^{-}$$
 (1)

$$\left[Cp_{2}Ti(S_{2}C_{2}R_{2})\right] + \left(S_{2}C_{2}R_{2}\right)^{2^{-}} \rightarrow \left[CpTi(S_{2}C_{2}R_{2})_{2}\right]^{-} + Cp^{-}$$
(2)

0022-328X/91/\$03.50 © 1991 - Elsevier Sequoia S.A. All rights reserved

Weitere anionische Komplexe mit Maleonitrildithiolato-, Tetrachlorbenzol-1,2-dithiolato- und Toluol-3,4-dithiolato-Liganden konnten aus der Reaktion von CpTiCl<sub>3</sub> und den Thiolato-Liganden mit Tetraethylammonium- bzw. Tetraphenylphosphonium-Gegenionen isoliert werden [3,4]. Die Ergebnisse der temperaturvariablen <sup>1</sup>H-NMR-Spektrometrie ließen auf das Vorliegen nur einer sterisch begünstigten Konformation der fünfgliedrigen TiS<sub>2</sub>C<sub>2</sub>-Chelatringe in Lösung schließen [4]. Jedoch gelang es bisher nicht, die vorgeschlagene Molekülstruktur auch im Kristall durch die Röntgenstrukturanalyse zu bestätigen.

In der vorliegenden Arbeit beschreiben wir Darstellung und Charakterisierung des neuen Titan(IV)-Komplexes  $[Ph_4P]^+[CpTi(1,2-S_2C_6H_4)_2]^-$ . Mit der durch Röntgenbeugung ermittelten Struktur des Komplexes kann in A erstmals die Molekülstruktur eines fünffach koordinierten Cyclopentadienyl(thiolato)titan(IV)-Anions vorgestellt werden.



### **Ergebnisse und Diskussion**

Präparative und Spektroskopische Aspekte

Die Umsetzung von CpTiCl<sub>3</sub> mit 1,2-(LiS)<sub>2</sub>C<sub>6</sub>H<sub>4</sub> im Molverhältnis 1:2 und einem Mol Ph<sub>4</sub>PBr in Pentan/Aceton führt unter LiCl- und LiBr-Abscheidung zur Substitution aller Chloro-Liganden am Monocyclopentadienyltitan-Zentrum und Bildung von [Ph<sub>4</sub>P][CpTi(1,2-S<sub>2</sub>C<sub>6</sub>H<sub>4</sub>)<sub>2</sub>] (Gl. 3).

$$CpTiCl_{3} + 2 1,2-(LiS)_{2}C_{6}H_{4} + Ph_{4}PBr \rightarrow [Ph_{4}P][CpTi(1,2-S_{2}C_{6}H_{4})_{2}]$$
(1)
+ 3 LiCl + LiBr (3)

1 kann durch Umkristallisation aus  $CH_2Cl_2/Pentan (1:1)$  bei Raumtemperatur in tief dunkelvioletten, gut ausgebildeten Kristallen erhalten werden. In Lösung ist der Komplex einige Stunden an Luft stabil, bevor ein weißlich-gelbes Zersetzungsprodukt ausfällt. Als Feststoff ist 1 monatelang luftstabil.

Für die massenspektroskopische Untersuchung wurde aufgrund des ionischen Charakters der Verbindung als Ionisierungsmethode die desorptive chemische Ionisation (DCI) gewählt. Ein dem Molekülion zuzuordnender Peak mit der Massenzahl m/z = 732 kann dennoch nicht beobachtet werden. Das Signal mit m/z = 339 läßt sich dem Kation  $[Ph_4P]^+$  zuordnen. Einige weitere Peaks entsprechen den aus der Fragmentierung des  $[Ph_4P]^+$ -Kations und seiner Folgeprodukte resultierenden Ionen wie z.B.  $[Ph_3PH]^+$  mit m/z = 263, das mit höchster Intensität ( $I_r = 100\%$ ) auftritt.

Das IR-Spektrum von 1 weist neben charakteristischen Absorptionsbanden des Monocyclopentadienyltitan-Systems die dem Tetraphenylphosphonium-Kation zugehörigen Absorptionen auf. Darüberhinaus können zusätzlich Banden des Benzol-1,2-dithiolato-Liganden beobachtet werden.

Im <sup>1</sup>H-NMR-Spektrum (CD<sub>2</sub>Cl<sub>2</sub>) zeigt 1 ein scharfes Singulett der Cp-Protonen bei 6.06 ppm, das um ca. 1.0 ppm hochfeldverschoben relativ zum Cp-Protonen-Singulett des CpTiCl<sub>3</sub> (7.04 ppm) ist, und je ein Multiplett der aromatischen Protonen des Liganden und des Kations. Dabei erscheint das bei 7.02 ppm zentrierte. symmetrische AA'BB'-Multiplett der C<sub>6</sub>H<sub>4</sub>-Protonen des Dithiolato-Liganden gegenüber den entsprechenden Signalen der Neutralkomplexe  $Cp_2Ti(S_2C_6H_4)$  (CS<sub>2</sub>; 7.3 ppm) und CpTiCl(S<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Me-4)(CDCl<sub>3</sub>; 7.6 ppm) [4] gleichfalls hochfeldverschoben. Diese Hochfeldverschiebungen stehen in Einklang mit der Lokalisierung negativer Ladungsdichte im Komplexanion A. Ein temperaturvariables <sup>1</sup>H-NMR-Spektrum (CD<sub>2</sub>Cl<sub>2</sub>) im Bereich von Raumtemperatur bis 192 K ( $-81^{\circ}$ C) weist keine Koaleszenz oder Aufspaltung des Cp-Protonensignals auf, so daß auf das Vorliegen von nur einem Konformeren des Anions A in Lösung geschlossen werden kann, falls nicht eine Chelatringinversion auftritt [5], die auch bei tiefer Temperatur noch rasch im Sinne der NMR-Zeitskala ist. Als nichtebene Chelatringkonformationen kommen hierbei die Anordnungen B (endo-endo bezüglich Cp), C (exo-endo) und D (exo-exo) in Betracht.



#### **Röntgenstrukturanalyse**

Die Verbindung 1 kristallisiert in der monoklinen Raumgruppe  $P2_1/c$  mit vier Molekülen in der Elementarzelle. In Tab. 1 sind die Kristalldaten und Einzelheiten zur Messung und Strukturverfeinerung zusammengestellt. Die Struktur wurde mit Patterson-Methoden unter Verwendung des Programmsystems SHELXS-86 [6] gelöst; die Nichtwasserstoffatome wurden mit anisotropen Temperaturfaktoren verfeinert, die Ringwasserstoffpositionen wurden berechnet und mit einem festen gemeinsamen Temperaturfaktor  $U = 0.08 \cdot 10^4$  pm<sup>2</sup> dem Strukturmodell hinzugefügt. Die Rechnungen wurden mit dem Programm SHELX-76 [7] durchgeführt, für die abschließenden geometrischen Berechnungen wurde das Programm PLATON [8] verwendet. Die Atomparameter sind in Tab. 2 angegeben, in Tab. 3 sind einige Bindungslängen und -winkel zusammengestellt. Fig. 1 zeigt eine ORTEP-Zeichnung des Anions A in 1.

Weitere Informationen zu den Strukturbestimmungen sind beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, W-7514 Eggenstein-Leopoldshafen 2, hinterlegt und können unter Angabe der Hinterlegungsnummer CSD-55417, der Autoren und des Zeitschriftenzitats angefordert werden.

Die Strukturanalyse zeigt, daß das Titanatom in 1 tetragonal-pyramidal von einem Cp-Liganden und den Schwefelatomen zweier Benzol-1,2-dithiolato-Liganden

| Raumgruppe:                                                             | $P2_1/c$ (Nr. 14)                                              |
|-------------------------------------------------------------------------|----------------------------------------------------------------|
| Gitterkonstanten:                                                       | -                                                              |
| <i>a</i> (pm)                                                           | 974.6(5)                                                       |
| <i>b</i>                                                                | 2893.5(9)                                                      |
| с                                                                       | 1301.4(6)                                                      |
| α (°)                                                                   | 90                                                             |
| β                                                                       | 96.11(5)                                                       |
| Ŷ                                                                       | 90                                                             |
| $V(10^6 \text{ pm}^6)$                                                  | 3649.1                                                         |
| Formel                                                                  | C <sub>41</sub> H <sub>33</sub> PS <sub>4</sub> Ti             |
| Formelmasse                                                             | 732.8                                                          |
| Ζ                                                                       | 4                                                              |
| $D_{\rm her}$ (g cm <sup>-3</sup> )                                     | 1.33                                                           |
| Strahlung                                                               | Mo- $K_{\alpha}$ (Graphitmonochromator), $\lambda = 71.069$ pm |
| Diffraktometer                                                          | Syntex P2 <sub>1</sub>                                         |
| Scan-Mode                                                               | $\omega/2\theta$                                               |
| 20-Grenzen                                                              | $0 \leq 2\theta \leq 50^{\circ}$                               |
| Anzahl unabhängiger Reflexe                                             | 5742                                                           |
| Reflexe mit $I > 2\sigma(I)$                                            | 4287                                                           |
| Absorptionskorrektur                                                    | empirisch (DIFABS [15])                                        |
| $\mu (cm^{-1})$                                                         | 5.04                                                           |
| Korrekturfaktoren:                                                      | min. 0.757, max. 1.194                                         |
| $R = \Sigma[  F_{\alpha}  -  F_{\alpha} ]/\Sigma F_{\alpha} $           | 0.068                                                          |
| $R_{w} = [\Sigma w ( F_{0}  -  F_{c} )^{2} / \Sigma w F_{0}^{2}]^{1/2}$ | $0.074 (w = 1/(\sigma^2 + 0.0098F^2))$                         |
| Anzahl Parameter                                                        | 424                                                            |
| Max. shift/o                                                            | 0.05                                                           |
| Peaks in D-Map (e/10 <sup>6</sup> pm <sup>3</sup> )                     | 0.53/-0.56                                                     |

Kristall- und Meßparameter für  $[(C_6H_5)_4P][(C_5H_5)Ti(S_2C_6H_4)_2]$  (1)

koordinert ist. Das Zentrum des  $\eta^5$ -C<sub>5</sub>H<sub>5</sub>-Ringes bildet die Spitze, die vier Schwefelatome bilden die Grundfläche der Pyramide. Die TiS<sub>2</sub>C<sub>2</sub>-Ringe sind an der S-S-Achse gefaltet, wobei einmal der Benzolkern zum Cp-Ring hin und einmal von ihm weg weist. Somit liegt von den prinzipiell denkbaren Konformeren **B**, **C** und **D** das unsymmetrisch gefaltete *exo-endo*-Konformere **C** vor, in dem die räumliche Wechselwirkung zwischen Cp- und Chelat-Liganden minimal ist.

Der Diederwinkel zwischen den Ebenen S1-Ti-S2 und S1-C1-C6-S2 beträgt 36.3°, zwischen S3-Ti-S4 und S3-C8-C7-S4 23.3°. Figur 2 zeigt die Anordnung dieser Ebenen. Eine vergleichbare Konformation liegt in  $[(\eta^5-C_5Me_5)-Ta(SCH=CHS)_2]$  vor, jedoch basiert diese Aussage lediglich auf spektroskopischen Untersuchungen, eine Kristallstrukturanalyse wurde an dieser Verbindung nicht durchgeführt [9]. Dagegen weisen in dem Rheniumkomplex  $[(\eta^5-C_5Me_5)Re(1,2-S_2C_6H_3-4-CH_3)_2]$ , von dem eine Röntgenstruktur vorliegt [10], die ebenfalls an der S-S-Achse gefalteten Chelatsysteme beide zum C<sub>5</sub>Me<sub>5</sub>-Ring hin (*endo-endo-Konformation analog B*).

Die Titan-Schwefel-Abstände in 1 sind annähernd gleich (239.6–241.6 pm, siehe Tab. 3), sie liegen im für Ti-S-Einfachbindungen typischen Bereich; so betragen z.B. im Cp<sub>2</sub>TiS<sub>5</sub>-Isomeren  $\beta$ -C<sub>10</sub>H<sub>10</sub>S<sub>5</sub>Ti (einem mit 1 verwandten, tetragonalpyramidal koordinierten Neutralkomplex mit CpTiS<sub>4</sub>-Gerüst) die Ti-S-Bindungslängen 235.5–253.7 pm [11] und in [(Me<sub>3</sub>SiC<sub>5</sub>H<sub>4</sub>)<sub>2</sub>TiS<sub>2</sub>]<sub>2</sub>C<sub>6</sub>H<sub>2</sub> 243 pm [12]. Der mittlere Ti-C-Abstand zu den Kohlenstoffatomen des Cp-Ringes beträgt 235.5

Tabelle 1

| Atom                           | x                                                                                    | у          | Z          | B <sub>eq</sub> <sup>a</sup> |
|--------------------------------|--------------------------------------------------------------------------------------|------------|------------|------------------------------|
| Ti                             | 0.1158(1)                                                                            | 0.1643(0)  | 0.2335(1)  | 4.63                         |
| <b>S</b> 1                     | 0.0188(2)                                                                            | 0.3251(1)  | 0.8948(1)  | 5.05                         |
| S2                             | -0.1251(2)                                                                           | 0.3308(0)  | 0.6688(1)  | 5.10                         |
| S3                             | 0.1124(3)                                                                            | 0.3964(1)  | 0.6077(1)  | 8.76                         |
| S4                             | 0.2506(2)                                                                            | 0.3920(1)  | 0.8376(2)  | 6.61                         |
| Р                              | 0.6952(1)                                                                            | 0.9148(0)  | 0.2661(1)  | 3.90                         |
| C1                             | -0.1251(6)                                                                           | 0.2903(2)  | 0.8586(4)  | 4.60                         |
| C2                             | -0.1816(7)                                                                           | 0.2611(2)  | 0.9301(5)  | 5.88                         |
| C3                             | -0.2993(8)                                                                           | 0.2377(2)  | 0.9028(7)  | 7.07                         |
| C4                             | -0.3657(7)                                                                           | 0.2412(2)  | 0.8066(8)  | 6.83                         |
| C5                             | -0.3141(6)                                                                           | 0.2680(2)  | 0.7324(6)  | 5.90                         |
| C6                             | -0.1906(6)                                                                           | 0.2934(2)  | 0.7578(5)  | 4.77                         |
| C7                             | 0.2088(7)                                                                            | 0.4447(2)  | 0.7798(7)  | 6.40                         |
| C8                             | 0.1513(8)                                                                            | 0.4462(2)  | 0.6787(8)  | 8.03                         |
| C9                             | 0.1288(10)                                                                           | 0.4903(3)  | 0.6311(10) | 12.55                        |
| C10                            | 0.1577(12)                                                                           | 0.5300(4)  | 0.6889(15) | 15.10                        |
| C11                            | 0.2146(11)                                                                           | 0.5283(4)  | 0.7805(15) | 12.75                        |
| C12                            | 0.2396(8)                                                                            | 0.4861(3)  | 0.8291(10) | 9.35                         |
| C13                            | 0.1293(9)                                                                            | 0.2565(2)  | 0.6932(11) | 8.25                         |
| C14                            | 0.1729(10)                                                                           | 0.2800(3)  | 0.6113(7)  | 6.99                         |
| C15                            | 0.2900(12)                                                                           | 0.3017(3)  | 0.6466(11) | 9.21                         |
| C16                            | 0.3208(11)                                                                           | 0.2930(5)  | 0.7448(13) | 9.60                         |
| C17                            | 0 2201(17)                                                                           | 0.2639(4)  | 0.7743(8)  | 11.82                        |
| C18                            | 0.1428(5)                                                                            | 0.1145(2)  | 0.7410(4)  | 4.28                         |
| C19                            | 0.0602(6)                                                                            | 0.1221(2)  | 0.6489(4)  | 4.86                         |
| C20                            | -0.0654(6)                                                                           | 0.1442(2)  | 0.6531(5)  | 6.18                         |
| C21                            | -0.1072(7)                                                                           | 0.1584(2)  | 0.7446(7)  | 7.13                         |
| C22                            | -0.0229(7)                                                                           | 0.1509(2)  | 0.8374(6)  | 6.48                         |
| C23                            | 0.1038(6)                                                                            | 0.1290(2)  | 0.8365(4)  | 5.18                         |
| C24                            | 0.2752(5)                                                                            | 0.0246(2)  | 0.7041(4)  | 4.15                         |
| C25                            | 0.3927(7)                                                                            | -0.0054(2) | 0.7198(5)  | 6.11                         |
| C26                            | 0.3759(8)                                                                            | -0.0525(2) | 0.7015(5)  | 6.36                         |
| C27                            | 0.2445(8)                                                                            | 0 5693(2)  | 1,1723(5)  | 7.00                         |
| C28                            | 0.1342(7)                                                                            | 0.5428(2)  | 1.1579(7)  | 8.61                         |
| C29                            | 0.1480(7)                                                                            | 0.0082(2)  | 0.6750(6)  | 6.49                         |
| C30                            | 0 4123(5)                                                                            | 0.0879(2)  | 0.8547(4)  | 4.27                         |
| C31                            | 0.3748(6)                                                                            | 0.0623(2)  | 0.9384(5)  | 6.42                         |
| C32                            | 0 4544(8)                                                                            | 0.0642(3)  | 1.0312(5)  | 8.20                         |
| C33                            | 0.5799(8)                                                                            | 0.4094(3)  | 1.5378(6)  | 7.64                         |
| C34                            | 0.6148(8)                                                                            | 0.1157(2)  | 0.9561(5)  | 7.76                         |
| C35                            | 0.5308(7)                                                                            | 0.1140(2)  | 0.8636(5)  | 6.18                         |
| C36                            | 0.3938(5)                                                                            | 0.1134(2)  | 0.6382(4)  | 4.23                         |
| C37                            | 0 3727(6)                                                                            | 0.1603(2)  | 0.6201(5)  | 5.93                         |
| C38                            | 0 4590(9)                                                                            | 0.3179(2)  | 1.0507(6)  | 6.98                         |
| C30                            | 0.5505(7)                                                                            | 0 3410(3)  | 1.0055(5)  | 6.45                         |
| C40                            | 0.5505(7)                                                                            | 0 3861(3)  | 1 0243(5)  | 6.79                         |
| C41                            | 0.4910(6)                                                                            | 0.4103(2)  | 1.0883(4)  | 5.34                         |
| $\overline{a} B_{eq} = (8\pi)$ | $^{2}/3)(\Sigma_{i}\Sigma_{j}U_{ij}a_{i}^{*}a_{j}^{*}\mathbf{a}_{i}\mathbf{a}_{j}).$ | (-)        |            | , <u></u> , <u>_</u> ,,,,    |

Tabelle 2 Koordinaten und äquivalente Temperaturfaktoren (10<sup>4</sup> pm<sup>2</sup>)

pm, der Abstand des Ti-Atoms zum Ringzentrum 206.0 pm; auch diese Werte stimmen mit den Abstandswerten in den beiden aufgeführten Komplexen überein (mittlerer Ti-C-Abstand 232.8 bzw. 239.7 pm).

| Atome              | Abstand (pm) | Atome    | Winkel (°) |  |
|--------------------|--------------|----------|------------|--|
| Ti–S1              | 241.2(2)     | S1–Ti–S2 | 80.7(1)    |  |
| Ti-S2              | 241.3(2)     | S1-Ti-S3 | 135.2(1)   |  |
| Ti-S3              | 239.6(3)     | S1-Ti-S4 | 80.7(1)    |  |
| Ti-S4              | 241.6(3)     | S2-Ti-S3 | 82.1(1)    |  |
| Ti-C13             | 235.9(7)     | S2-Ti-S4 | 133.4(1)   |  |
| Ti-C14             | 237.2(9)     | S3-Ti-S4 | 81.8(1)    |  |
| Ti-C15             | 235.3(12)    | Ti-S1-C1 | 102.5(2)   |  |
| Ti-C16             | 234.1(12)    | Ti-S2-C6 | 102.4(2)   |  |
| Ti-C17             | 235.0(13)    | Ti-S3-C8 | 105.0(3)   |  |
| Ti–Cp <sup>a</sup> | 206.0(5)     | Ti-S4-C7 | 105.1(3)   |  |
| S1-C1              | 175.0(6)     |          |            |  |
| S2-C6              | 175.5(6)     |          |            |  |
| S3-C8              | 173.3(8)     |          |            |  |
| S4-C7              | 173.0(7)     |          |            |  |

Ausgewählte Bindungslängen und -winkel in A

<sup>a</sup> Cp = Centroid des Cyclopentadienylrings C13-C17.

Die C-C-Abstände in den Ringen und die P-C-Abstände im Kation  $[(C_6H_5)_4P]^+$ entsprechen den Erwartungswerten. Die anisotropen Temperaturfaktoren der Cp-Kohlenstoffatome und der äußeren Benzol-Kohlenstoffatome C2-C5 bzw. C9-C12 weisen relativ große Werte auf, was auf eine geringfügige Rotationsfehlordnung des



Fig. 1. Molekülstruktur des Komplexanions  $[(\eta^5-C_5H_5)Ti(1,2-S_2C_6H_4)_2]^-$  (A).



Fig. 2. Faltung der Chelatringebenen in A, entsprechend dem exo-endo-Konformeren C.

Tabelle 3

Cp-Ringes bzw. eine Schwingung der Benzolgruppen um die Achsen C1-C6 und C7-C8 deutet.

# **Experimenteller Teil**

Alle präparativen Arbeiten wurden unter Ausschluß von Luft und Feuchtigkeit unter Verwendung absolutierter, argongesättigter Lösungsmittel und getrockneter Apparaturen in Argonatmosphäre durchgeführt. Die Synthese von CpTiCl<sub>3</sub> erfolgte nach Literaturvorschrift [13] aus  $Cp_2TiCl_2$  [14]. 1,2-Benzoldithiol und Tetraphenylphosphoniumbromid wurden von Fluka, n-Butyllithium von Merck bezogen. Die Aufnahme der Kernresonanzspektren (Bruker WP 80) erfolgte mit im Vakuum eingeschmolzenen Proben. Das Massenspektrum wurde auf einem stark modifizierten Varian-Spektrometer (MAT 311 A) nach der DCI-Methode (Reaktantgas Isobutan) aufgenommen. Das IR-Spektrum (Perkin–Elmer 580 B) wurde am KBr-Preßling erhalten.

Tetraphenylphosphonium- $(\eta^{5}$ -cyclopentadienyl)bis(benzol-1,2-dithiolato)titanat(IV) (1)

Zur Lösung von 1.50 g (10.56 mmol) 1,2-Benzoldithiol in 40 ml Pentan wird die stöchiometrische Menge in Hexan gelösten n-Buthyllithiums (1.35 g bzw. 21.12 mmol) getropft, wobei sich das schwerlösliche Dithiolat (LiS)<sub>2</sub>C<sub>6</sub>H<sub>4</sub> bildet. Nach 1 h Rühren wird innerhalb  $1\frac{1}{2}$  h das in 50 ml Aceton gelöste CpTiCl<sub>3</sub> (1.16 g bzw. 5.28 mmol) zugetropft und 20 h bei Raumtemperatur gerührt. Zur tiefvioletten Reaktionslösung werden 2.21 g (5.28 mmol) Ph<sub>4</sub>PBr gegeben, 2 h nachgerührt und absitzen gelassen. Nach Filtration von ausgefallenem Lithiumhalogenid und Einengen der Lösung im Vakuum zur Trockene wird der Rückstand in CH<sub>2</sub>Cl<sub>2</sub>/Pentan umkristallisiert und im Vakuum bei 25°C getrocknet. Die dunkelvioletten Kristalle sind gut löslich in CH<sub>2</sub>Cl<sub>2</sub> und CHCl<sub>3</sub>, mäßig löslich in Toluol und unlöslich in Pentan. Sie zersetzen sich an Luft ab 170°C.

Ausbeute 2.60 g (67%). Gef.: C, 66.79; H, 4.47.  $C_{41}H_{33}PS_4Ti$  (732.8) ber.: C, 67.20; H, 4.54%. IR (KBr,  $\tilde{\nu}$  in cm<sup>-1</sup>): 3040w ( $\nu$ (CH): Cp,  $C_6H_5$ ,  $C_6H_4$ ); 1585w und 1480m ( $C_6H_5$ ); 1435s ( $\omega$ (CC): Cp,  $C_6H_5$ ,  $C_6H_4$ ); 1270m ( $S_2C_6H_4$ ); 1185vw; 1150vw; 1105s ( $C_6H_5$ ); 1015s ( $\delta$ (CH): Cp); 995m ( $C_6H_5$ ); 805s ( $\gamma$ (CH): Cp); 745s, 720s und 685m ( $C_6H_5$ ); 660m ( $S_2C_6H_4$ ); 525vs ( $C_6H_5$ ); 390w ( $\nu$ (Ti-Ring)); 370m ( $\nu$ (Ti-S)). MS (DCI, Isobutan): m/z ( $I_r$ ) 339 (5; Ph<sub>4</sub>P<sup>+</sup>), 295 (31; Ph<sub>3</sub>P<sub>4</sub>H<sub>2</sub><sup>+</sup>), 263 (100; Ph<sub>3</sub>PH<sup>+</sup>), 219 (27; Ph<sub>2</sub>P<sub>2</sub>H<sub>2</sub><sup>+</sup>), 185 (27; Ph<sub>2</sub>P<sup>+</sup>), 111 (17; PhPH<sub>3</sub><sup>+</sup>). <sup>1</sup>H-NMR (CD<sub>2</sub>Cl<sub>2</sub>,  $\delta$  in ppm):  $\delta$ (Cp) = 6.06s;  $\delta$ ( $C_6H_4$ ) = 7.02m;  $\delta$ ( $C_6H_5$ ) = 7.65m.

## Dank

Wir danken Herrn Dipl.-Chem. M. Kempf für die Aufnahme des DCI-Massenspektrums. Dem Fonds der chemischen Industrie danken wir für finanzielle Unterstützung.

## Literatur

- 1 J. Locke und J.A. McCleverty, Inorg. Chem., 5 (1966) 1157.
- 2 J.A. McCleverty, T.A. James und E.J. Wharton, Inorg. Chem., 8 (1969) 1340.
- 3 T.A. James und J.A. McCleverty, J. Chem. Soc. A, 1970, 3318.

- 4 H. Köpf und T. Klapötke, J. Organomet. Chem., 307 (1986) 319.
- 5 T. Klapötke und H. Köpf, J. Organomet. Chem. Libr., 20 (1988) 343.
- 6 G.M. Sheldrick, SHELXS-86, Program for Crystal Structure Solution, Göttingen, 1986.
- 7 G.M. Sheldrick, SHELX-76, Program for Crystal Structure Determination, Cambridge, 1976.
- 8 A.L. Spek, The EUCLID Package, in D. Sayre (Ed.), Computational Crystallography, Oxford, 1982.
- 9 K. Tatsumi, J. Takeda, Y. Sekiguchi, M. Kohsaka und A. Nakamura, Angew. Chem., 97 (1985) 355.
- 10 J. Takacs, P. Kiprof und W.A. Herrmann, Polyhedron, 9 (1990) 2211.
- 11 D.M. Giolando und T.B. Rauchfuss, J. Am. Chem. Soc., 106 (1984) 6455.
- 12 H. Balz, H. Köpf und J. Pickardt, J. Organomet. Chem., 417 (1991) 397.
- 13 R.D. Gorsich, J. Am. Chem. Soc., 82 (1960) 4211.
- 14 G. Wilkinson und J. Birmingham, J. Am. Chem. Soc., 76 (1954) 4281.
- 15 N. Walker und D. Stuart, Acta Crystallogr., Sect. A, 39 (1983) 158.